Suitable anaerobic technologies for Dairy resource recovery

Erik Draber
Biothane Systems International, Delft NL
Biothane’s Granular Technologies

Biothane Advanced UASB
- Well proven technology with new three-phase-separator for all industrial wastewaters
- Robust, with high sCOD removal efficiency
- Restriction for SS (<1,000 mg/l) and FOG (< 100 mg/l) content

Biobed® Advanced ESGB
- High rate technology with new three-phase-separator for most industrial wastewaters
- Less volume, less foot-print with similar sCOD removal efficiency
- More sensitive regarding SS and FOG
Biothane’s non-granular technologies

- **Biobulk CSTR**
 - Solid waste / waste slurry digestion
 - With or without sludge recirculation
 - Suitable for high COD / FOG / SS and low flows

- **Memthane® Anaerobic MBR**
 - New technology for high strength wastewater
 - Using Cross-flow UF membranes
 - Very High COD / SS removal efficiencies
Dairy effluent characterization

<table>
<thead>
<tr>
<th>Milk Processing</th>
<th>Cheese / Yogurt</th>
<th>Ice-cream</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Production cleaning, CIP</td>
<td>- Production cleaning, CIP, plus whey</td>
<td>- Production cleaning, CIP</td>
</tr>
<tr>
<td>- High flow rates</td>
<td>- Low flow rates</td>
<td>- Medium flow rates</td>
</tr>
<tr>
<td>- COD 1,500 – 3,000 mg/l (Proteins, Fat)</td>
<td>- COD 1,500 – 10,000 mg/l (Proteins, Fat, lactic acid)</td>
<td>- COD 3,000 – 20,000 mg/l (sugar, starch)</td>
</tr>
<tr>
<td>- TSS 300 mg/l,</td>
<td>- TSS 300 mg/l</td>
<td>- TSS 100 mg/l,</td>
</tr>
<tr>
<td>- FOG 100 – 300 mg/l</td>
<td>- FOG 300 – 1000 mg/l</td>
<td>- FOG 100 – 200 mg/l</td>
</tr>
<tr>
<td>- Usually high P, high N</td>
<td>- Usually high P, lower N</td>
<td>- Usually lower P, lower N</td>
</tr>
<tr>
<td>- Not always anaerobic applicable due to low SCOD</td>
<td>- Anaerobic applicable, sophisticated choice of technology</td>
<td>- Anaerobic applicable</td>
</tr>
<tr>
<td>- Good biodegradability</td>
<td>- Good biodegradability</td>
<td>- Good biodegradability</td>
</tr>
<tr>
<td></td>
<td>- Additional COD source: acid whey (COD 60,000 mg/l, very well degradable)</td>
<td></td>
</tr>
</tbody>
</table>
Case Study 1 - Ice-cream, Germany 2003

- Effluent from Ice-cream production
 - High in COD
 - Fluctuations in FOG and COD content depending on production

- Flow 800 …1,300 m³/d
- COD 3,000… 25,000 mg/l

- Pre-treatment
 - Granular sludge reactor (Biobed EGSB)
 - DAF-float to municipal digestor
 - Anaerobic effluent to municipality
 - Municipal Sludge Digestor
Case Study 1 - Ice-cream Germany 2003

Flowchart:
- Factory Effluent
- Buffer Tank
- DAF unit
- Conditioning tank
- Surplus Sludge (Municipal) Digestor
- Discharge to river
- CHP unit
Case Study 1 - Ice-cream Germany 2003

- Operational results – COD reduction

- DAF unit: total COD removal: 25 – 30 %
- FOG removal: 60 – 70%
 - to municipal sludge digester

- Anaerobic: total COD reduction: 70 – 75%
- soluble COD reduction: 80 – 85%

- Total COD reduction: 83 %,

- Biogas conversion in EGSB plant: 70% of the total COD = 2,000 Nm³/d plus extra biogas due to floating sludge in municipal digester.
Case Study 2 – Mlekovita Dairy Poland 2011

- Dairy north-east of Poland – production extension, retrofit of existing plant
- Production of milk, butter, yogurt, cream, cottage cheese
- Presence of acid whey waste stream

- High Flow = 5,000 m³/d, low temperature 20 – 25 °C
- COD load: 30,000 kg/d
 - Highly fluctuating depending on production cleaning cycles

Process choice:
- Optimized DAF separation step
- CSTR process for DAF float, acid whey and aerobic surplus sludge
 - 7000 m³ reactor
 - 20 tCOD/d
- Use of existing aerobic wwtp
Case Study 2 – Mlekowita Dairy Poland 2011

- Dairy Effluent
- Buffer Tank
- DAF unit
- Nitrification / Denitrification
- Final sedimentation
- Discharge to river
- Municipal Wastewater
- Acid Whey
- Biobulk CSTR Digestor
- Centrifuge
- CHP unit
Operating results of the anaerobic system with COD load of 18,000 kg/d

- TCOD reduction 63 %
- TSS reduction 40%
- Biogas production: 7,150 m³/d and 60 - 65% CH₄
Case Study 3 - Arla Dairy, UK

- Co-operative for processing of 1.1 billion liter fresh milk / year

- ARLA: “Arla is aiming for the dairy to be world’s first zero-carbon emission milk processing facility using cutting edge renewable energy solutions”

- Design Phase 1: COD removal – biogas production
Case Study 3 - Arla Dairy, UK

Design Phase 2:
- AnMBR extension due to production increase
- Advanced N – removal with Anitamox® deammonification MBBR process
- Advanced P - removal

Process choice:

- Memthane® Anaerobic MBR
 - 700 m³ reactor
 - 5 tCOD/d
 - 3 external cross-flow membrane skids for 550 m³/d
Case Study 3 - Arla Dairy, UK

Milk processing effluent

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Buffer Tank</th>
<th>Methane digester</th>
<th>UF cross flow filtration</th>
<th>CHP unit</th>
</tr>
</thead>
</table>

Flare

Sludge Storage Tank
Permeate TCOD < 100 mg/l, TCOD removal > 99%
Producing >10% of Arla’s energy consumption out of their residues
Thank you for your attention

Questions?

Erik Draber
Biothane System International
erik.draber@veolia.com
T: +49 2102 9975430
M: +49 174 3435523